Optimization on Product Submanifolds of Convolution Kernels

نویسندگان

  • Mete Ozay
  • Takayuki Okatani
چکیده

Recent advances in optimization methods used for training convolutional neural networks (CNNs) with kernels, which are normalized according to particular constraints, have shown remarkable success. This work introduces an approach for training CNNs using ensembles of joint spaces of kernels constructed using different constraints. For this purpose, we address a problem of optimization on ensembles of products of submanifolds (PEMs) of convolution kernels. To this end, we first propose three strategies to construct ensembles of PEMs in CNNs. Next, we expound their geometric properties (metric and curvature properties) in CNNs. We make use of our theoretical results by developing a geometry-aware SGD algorithm (G-SGD) for optimization on ensembles of PEMs to train CNNs. Moreover, we analyze convergence properties of G-SGD considering geometric properties of PEMs. In the experimental analyses, we employ G-SGD to train CNNs on Cifar10, Cifar-100 and Imagenet datasets. The results show that geometric adaptive step size computation methods of G-SGD can improve training loss and convergence properties of CNNs. Moreover, we observe that classification performance of baseline CNNs can be boosted using GSGD on ensembles of PEMs identified by multiple constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization on Submanifolds of Convolution Kernels in CNNs

Kernel normalization methods have been employed to improve robustness of optimization methods to reparametrization of convolution kernels, covariate shift, and to accelerate training of Convolutional Neural Networks (CNNs). However, our understanding of theoretical properties of these methods has lagged behind their success in applications. We develop a geometric framework to elucidate underlyi...

متن کامل

Application of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold

In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1‎, ‎f_2‎, ‎f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition‎. ‎Finally‎, ‎we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...

متن کامل

Spatio-Temporal Convolution Kernels for Clustering Trajectories

We propose a novel class of kernels to identify tactical patterns in multi-trajectory data such as soccer games. Formally, we introduce a group of R-convolution kernels called Spatio-Temporal Convolution Kernels composed of a temporal and a spatial kernel. The particular choice of the component kernels depends on the application at hand. For the purpose of clustering player and ball trajectorie...

متن کامل

Rough Singular Integrals Along Submanifolds of Finite Type on Product Domains

We establish the L boundedness of singular integrals on product domains with rough kernels in L(logL) and are supported by subvarieties.

متن کامل

Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups

This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism.  Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.06123  شماره 

صفحات  -

تاریخ انتشار 2017